deviance.tweedie.md
deviance.tweedie
R Documentation
Tweedie Deviance
Description
A generic S3 function to compute the tweedie deviance score for a
regression model. This function dispatches to S3 methods indeviance.tweedie()
and performs no input validation. If you supply NA
values or vectors of unequal length (e.g. length(x) != length(y)
), the
underlying C++
code may trigger undefined behavior and crash your R
session.
Defensive measures
Because deviance.tweedie()
operates on raw pointers, pointer-level
faults (e.g. from NA or mismatched length) occur before any R
-level
error handling. Wrapping calls in try()
or tryCatch()
will not
prevent R
-session crashes.
To guard against this, wrap deviance.tweedie()
in a "safe" validator
that checks for NA values and matching length, for example:
Apply the same pattern to any custom metric functions to ensure input
sanity before calling the underlying C++
code.
Usage
Arguments
...
Arguments passed on to deviance.tweedie.numeric
,weighted.deviance.tweedie.numeric
actual,predicted
A pair of <double> vectors of length n
.
power
A <double> value, default = 2. Tweedie power parameter. Either power <= 0 or power >= 1.
The higher power
, the less weight is given
to extreme deviations between actual and predicted values.
power < 0: Extreme stable distribution. Requires: predicted > 0.
power = 0: Normal distribution, output corresponds to
mse()
, actual and predicted can be any real numbers.power = 1: Poisson distribution (
deviance.poisson()
). Requires: actual >= 0 and predicted > 0.1 < power < 2: Compound Poisson distribution. Requires: actual >= 0 and predicted > 0.
power = 2: Gamma distribution (
deviance.gamma()
). Requires: actual > 0 and predicted > 0.power = 3: Inverse Gaussian distribution. Requires: actual > 0 and predicted > 0.
otherwise: Positive stable distribution. Requires: actual > 0 and predicted > 0.
w
A <double> vector of sample weights.
Value
A <double> value
References
James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.
Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).
Virtanen, Pauli, et al. "SciPy 1.0: fundamental algorithms for scientific computing in Python." Nature methods 17.3 (2020): 261-272.
Examples
Last updated