fdr.md

fdr

R Documentation

False Discovery Rate

Description

A generic S3 function to compute the false discovery rate score for a classification model. This function dispatches to S3 methods in fdr() and performs no input validation. If you supply NA values or vectors of unequal length (e.g. length(x) != length(y)), the underlying C++ code may trigger undefined behavior and crash your R session.

Defensive measures

Because fdr() operates on raw pointers, pointer-level faults (e.g. from NA or mismatched length) occur before any R-level error handling. Wrapping calls in try() or tryCatch() will not prevent R-session crashes.

To guard against this, wrap fdr() in a "safe" validator that checks for NA values and matching length, for example:

safe_fdr <- function(x, y, ...) {
  stopifnot(
    !anyNA(x), !anyNA(y),
    length(x) == length(y)
  )
  fdr(x, y, ...)
}

Apply the same pattern to any custom metric functions to ensure input sanity before calling the underlying C++ code.

Efficient multi-metric evaluation

For multiple performance evaluations of a classification model, first compute the confusion matrix once via cmatrix(). All other performance metrics can then be derived from this one object via S3 dispatching:

## compute confusion matrix
confusion_matrix <- cmatrix(actual, predicted)

## evaluate false discovery rate
## via S3 dispatching
fdr(confusion_matrix)

## additional performance metrics
## below

The fdr.factor() method calls cmatrix() internally, so explicitly invoking fdr.cmatrix() yourself avoids duplicate computation, yielding significant speed and memory effciency gains when you need multiple evaluation metrics.

Usage

Arguments

...

Arguments passed on to fdr.factor,weighted.fdr.factor, fdr.cmatrix

actual,predicted

A pair of <integer> or <factor> vectors of length n, and k levels.

estimator

An <integer>-value of length 1 (default: 0).

  • 0 - a named <double>-vector of length k (class-wise)

  • 1 - a <double> value (Micro averaged metric)

  • 2 - a <double> value (Macro averaged metric)

na.rm

A <logical> value of length 1 (default: TRUE). If TRUE, NA values are removed from the computation. This argument is only relevant when micro != NULL. Whenna.rm = TRUE, the computation corresponds tosum(c(1, 2, NA), na.rm = TRUE) / length(na.omit(c(1, 2, NA))). When na.rm = FALSE, the computation corresponds tosum(c(1, 2, NA), na.rm = TRUE) / length(c(1, 2, NA)).

w

A <double> vector of sample weights.

x

A confusion matrix created cmatrix().

Value

If estimator is given as

  • 0 - a named <double> vector of length k

  • 1 - a <double> value (Micro averaged metric)

  • 2 - a <double> value (Macro averaged metric)

References

James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.

Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).

Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.

Examples

Last updated