🚀
Documentation
RepositoryBugreport
  • Introduction
  • Applications
    • Example
  • Reference
    • Classification metrics
      • Accuracy
        • accuracy.cmatrix.md
        • accuracy.factor.md
        • accuracy.md
        • weighted.accuracy.factor.md
      • Area under the Precision Recall Curve
        • auc.pr.curve.factor.md
        • auc.pr.curve.md
        • pr.curve
          • auc.pr.curve.factor.md
          • auc.pr.curve.md
          • pr.curve.factor.md
          • pr.curve.md
          • weighted.auc.pr.curve.factor.md
          • weighted.pr.curve.factor.md
        • weighted.auc.pr.curve.factor.md
      • Area under the Receiver Operator Characteristics Curve
        • auc.roc.curve.factor.md
        • auc.roc.curve.md
        • roc.curve
          • auc.roc.curve.factor.md
          • auc.roc.curve.md
          • roc.curve.factor.md
          • roc.curve.md
          • weighted.auc.roc.curve.factor.md
          • weighted.roc.curve.factor.md
        • weighted.auc.roc.curve.factor.md
      • Balanced Accuracy
        • baccuracy.cmatrix.md
        • baccuracy.factor.md
        • baccuracy.md
        • weighted.baccuracy.factor.md
      • Brier Score
        • brier.score.matrix.md
        • brier.score.md
        • weighted.brier.score.matrix.md
      • Cohen's kappa-Statistic
        • ckappa.cmatrix.md
        • ckappa.factor.md
        • ckappa.md
        • weighted.ckappa.factor.md
      • Cross Entropy
        • cross.entropy.matrix.md
        • cross.entropy.md
      • Diagnostic Odds Ratio
        • dor.cmatrix.md
        • dor.factor.md
        • dor.md
        • weighted.dor.factor.md
      • False Discovery Rate
        • fdr.cmatrix.md
        • fdr.factor.md
        • fdr.md
        • weighted.fdr.factor.md
      • False Omission Rate
        • fer.cmatrix.md
        • fer.factor.md
        • fer.md
        • weighted.fer.factor.md
      • False Positive Rate
        • fpr.cmatrix.md
        • fpr.factor.md
        • fpr.md
        • weighted.fpr.factor.md
      • Fowlkes Mallows Index
        • fmi.cmatrix.md
        • fmi.factor.md
        • fmi.md
        • weighted.fmi.factor.md
      • Hamming Loss
        • hammingloss.cmatrix.md
        • hammingloss.factor.md
        • hammingloss.md
        • weighted.hammingloss.factor.md
      • Jaccard Index
        • jaccard.cmatrix.md
        • jaccard.factor.md
        • jaccard.md
        • weighted.jaccard.factor.md
      • Logarithmic Loss
        • logloss.factor.md
        • logloss.integer
        • logloss.integer.md
          • logloss.integer.md
          • weighted.logloss.integer.md
        • logloss.md
        • weighted.logloss.factor.md
        • weighted.logloss.integer.md
      • Matthews Correlation Coefficient
        • mcc.cmatrix.md
        • mcc.factor.md
        • mcc.md
        • weighted.mcc.factor.md
      • Negative Likelihood Ratio
        • nlr.cmatrix.md
        • nlr.factor.md
        • nlr.md
        • weighted.nlr.factor.md
      • Negative Predictive Value
        • npv.cmatrix.md
        • npv.factor.md
        • npv.md
        • weighted.npv.factor.md
      • Positive Likelihood Ratio
        • plr.cmatrix.md
        • plr.factor.md
        • plr.md
        • weighted.plr.factor.md
      • Precision
        • precision.cmatrix.md
        • precision.factor.md
        • precision.md
        • weighted.precision.factor.md
      • Recall
        • accuracy.cmatrix.md
        • baccuracy.cmatrix.md
        • ckappa.cmatrix.md
        • cmatrix.factor.md
        • cmatrix.md
        • dor.cmatrix.md
        • fbeta.cmatrix.md
        • fdr.cmatrix.md
        • fer.cmatrix.md
        • fmi.cmatrix.md
        • fpr.cmatrix.md
        • hammingloss.cmatrix.md
        • jaccard.cmatrix.md
        • mcc.cmatrix.md
        • nlr.cmatrix.md
        • npv.cmatrix.md
        • plr.cmatrix.md
        • precision.cmatrix.md
        • recall
        • recall.cmatrix.md
          • recall.cmatrix.md
          • recall.factor.md
          • recall.md
          • weighted.recall.factor.md
        • specificity.cmatrix.md
        • weighted.cmatrix.factor.md
        • zerooneloss.cmatrix.md
      • Relative Entropy
        • relative.entropy.matrix.md
        • relative.entropy.md
      • Shannon Entropy
        • shannon.entropy.matrix.md
        • shannon.entropy.md
      • Specificity
        • specificity.cmatrix.md
        • specificity.factor.md
        • specificity.md
        • weighted.specificity.factor.md
      • Zero-One Loss
        • weighted.zerooneloss.factor.md
        • zerooneloss.cmatrix.md
        • zerooneloss.factor.md
        • zerooneloss.md
      • f{beta}
        • fbeta.cmatrix.md
        • fbeta.factor.md
        • fbeta.md
        • weighted.fbeta.factor.md
    • Regression metrics
      • Concordance Correlation Coefficient
        • ccc.md
        • ccc.numeric.md
        • weighted.ccc.numeric.md
      • Gamma Deviance
        • deviance.gamma.md
        • deviance.gamma.numeric.md
        • weighted.deviance.gamma.numeric.md
      • Geometric Mean Squared Error
        • gmse.md
        • gmse.numeric.md
        • weighted.gmse.numeric.md
      • Huber Loss
        • huberloss.md
        • huberloss.numeric.md
        • weighted.huberloss.numeric.md
      • Mean Absolute Error
        • mae.md
        • mae.numeric.md
        • weighted.mae.numeric.md
      • Mean Absolute Percentage Error
        • mape.md
        • mape.numeric.md
        • weighted.mape.numeric.md
      • Mean Arctangent Absolute Percentage Error
        • maape.md
        • maape.numeric.md
        • weighted.maape.numeric.md
      • Mean Percentage Error
        • mpe.md
        • mpe.numeric.md
        • weighted.mpe.numeric.md
      • Mean Squared Error
        • mse.md
        • mse.numeric.md
        • weighted.mse.numeric.md
      • Pinball Loss
        • pinball.md
        • pinball.numeric.md
        • weighted.pinball.numeric.md
      • Poisson Deviance
        • deviance.poisson.md
        • deviance.poisson.numeric.md
        • weighted.deviance.poisson.numeric.md
      • Relative Absolute Error
        • rae.md
        • rae.numeric.md
        • weighted.rae.numeric.md
      • Relative Root Mean Squared Error
        • rrmse.md
        • rrmse.numeric.md
        • weighted.rrmse.numeric.md
      • Root Mean Squared Error
        • rmse.md
        • rmse.numeric.md
        • weighted.rmse.numeric.md
      • Root Mean Squared Logarithmic Error
        • rmsle.md
        • rmsle.numeric.md
        • weighted.rmsle.numeric.md
      • Root Relative Squared Error
        • rrse.md
        • rrse.numeric.md
        • weighted.rrse.numeric.md
      • Symmetric Mean Absolutte Percentage Error
        • smape.md
        • smape.numeric.md
        • weighted.smape.numeric.md
      • Tweedie Deviance
        • deviance.tweedie.md
        • deviance.tweedie.numeric.md
        • weighted.deviance.tweedie.numeric.md
      • r^2
        • rsq.md
        • rsq.numeric.md
        • weighted.rsq.numeric.md
  • Changelog
    • Changelog
Powered by GitBook
On this page
  • Benchmarks
  • Install CRAN version
  • Install development version

Introduction

NextExample

Last updated 1 month ago

is an implementation of 40+ scoring metrics for supervised and unsupervised machine learning and statistical learning models.

Benchmarks

Benchmark
## seed
set.seed(1903)

## generate
## values
actual    <- rnorm(n = 1e8)
predicted <- actual + rnorm(n = 1e8)

## benchmark
## RMSE
bench::mark(
  `{SLmetrics}` = SLmetrics::rmse(actual, predicted),
  `{yardstick}` = yardstick::rmse_vec(actual, predicted),
  `{MLmetrics}` = MLmetrics::RMSE(predicted, actual),
  `{base}`      = sqrt(as.numeric(crossprod(actual - predicted))/length(actual))
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 4 × 6
#>   expression       min   median `itr/sec` mem_alloc `gc/sec`
#>   <bch:expr>  <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
#> 1 {SLmetrics}  44.36ms  45.93ms    21.8      5.95MB    0    
#> 2 {yardstick}    3.98s    3.98s     0.251     4.1GB    0.754
#> 3 {MLmetrics} 669.96ms 669.96ms     1.49      763MB    0    
#> 4 {base}      483.24ms 562.09ms     1.78   762.94MB    0.890

Install CRAN version

CRAN version
pak::pak(
    pkg = "SLmetrics",
    ask = FALSE
    )

Install development version

1

Clone repository

Clone Repository
git clone --recurse-submodules https://github.com/serkor1/SLmetrics.git
2

Install with {pak}

Install with {pak}
pak::pak(
    pkg = ".",
    ask = FALSE
)
{SLmetrics}