hammingloss.cmatrix.md
hammingloss.cmatrix
R Documentation
Hamming Loss
Description
A generic S3 function to compute the hamming loss score for a
classification model. This function dispatches to S3 methods inhammingloss() and performs no input validation. If you supply NA
values or vectors of unequal length (e.g. length(x) != length(y)), the
underlying C++ code may trigger undefined behavior and crash your R
session.
Defensive measures
Because hammingloss() operates on raw pointers, pointer-level faults
(e.g. from NA or mismatched length) occur before any R-level error
handling. Wrapping calls in try() or tryCatch() will not preventR-session crashes.
To guard against this, wrap hammingloss() in a "safe" validator that
checks for NA values and matching length, for example:
safe_hammingloss <- function(x, y, ...) {
stopifnot(
!anyNA(x), !anyNA(y),
length(x) == length(y)
)
hammingloss(x, y, ...)
}Apply the same pattern to any custom metric functions to ensure input
sanity before calling the underlying C++ code.
Efficient multi-metric evaluation
For multiple performance evaluations of a classification model, first
compute the confusion matrix once via cmatrix(). All other performance
metrics can then be derived from this one object via S3 dispatching:
## compute confusion matrix
confusion_matrix <- cmatrix(actual, predicted)
## evaluate hamming loss
## via S3 dispatching
hammingloss(confusion_matrix)
## additional performance metrics
## belowThe hammingloss.factor() method calls cmatrix() internally, so
explicitly invoking hammingloss.cmatrix() yourself avoids duplicate
computation, yielding significant speed and memory effciency gains when
you need multiple evaluation metrics.
Usage
Arguments
x
A confusion matrix created cmatrix().
...
Arguments passed into other methods.
Value
A <double>-value
References
James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.
Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).
Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.
Examples
Last updated