hammingloss.md

hammingloss

R Documentation

Hamming Loss

Description

A generic S3 function to compute the hamming loss score for a classification model. This function dispatches to S3 methods inhammingloss() and performs no input validation. If you supply NA values or vectors of unequal length (e.g. length(x) != length(y)), the underlying C++ code may trigger undefined behavior and crash your R session.

Defensive measures

Because hammingloss() operates on raw pointers, pointer-level faults (e.g. from NA or mismatched length) occur before any R-level error handling. Wrapping calls in try() or tryCatch() will not preventR-session crashes.

To guard against this, wrap hammingloss() in a "safe" validator that checks for NA values and matching length, for example:

safe_hammingloss <- function(x, y, ...) {
  stopifnot(
    !anyNA(x), !anyNA(y),
    length(x) == length(y)
  )
  hammingloss(x, y, ...)
}

Apply the same pattern to any custom metric functions to ensure input sanity before calling the underlying C++ code.

Efficient multi-metric evaluation

For multiple performance evaluations of a classification model, first compute the confusion matrix once via cmatrix(). All other performance metrics can then be derived from this one object via S3 dispatching:

## compute confusion matrix
confusion_matrix <- cmatrix(actual, predicted)

## evaluate hamming loss
## via S3 dispatching
hammingloss(confusion_matrix)

## additional performance metrics
## below

The hammingloss.factor() method calls cmatrix() internally, so explicitly invoking hammingloss.cmatrix() yourself avoids duplicate computation, yielding significant speed and memory effciency gains when you need multiple evaluation metrics.

Usage

Arguments

...

Arguments passed on to hammingloss.factor,weighted.hammingloss.factor,hammingloss.cmatrix

actual,predicted

A pair of <integer> or <factor> vectors of length n, and k levels.

w

A <double> vector of sample weights.

x

A confusion matrix created cmatrix().

Value

A <double>-value

References

James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.

Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).

Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.

Examples

Last updated