deviance.poisson.numeric.md
deviance.poisson.numeric
R Documentation
Poisson Deviance
Description
A generic S3 function to compute the poisson deviance score for a
regression model. This function dispatches to S3 methods indeviance.poisson()
and performs no input validation. If you supply NA
values or vectors of unequal length (e.g. length(x) != length(y)
), the
underlying C++
code may trigger undefined behavior and crash your R
session.
Defensive measures
Because deviance.poisson()
operates on raw pointers, pointer-level
faults (e.g. from NA or mismatched length) occur before any R
-level
error handling. Wrapping calls in try()
or tryCatch()
will not
prevent R
-session crashes.
To guard against this, wrap deviance.poisson()
in a "safe" validator
that checks for NA values and matching length, for example:
Apply the same pattern to any custom metric functions to ensure input
sanity before calling the underlying C++
code.
Usage
Arguments
actual
, predicted
A pair of <double> vectors of length n
.
...
Arguments passed into other methods
Value
A <double> value
References
James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.
Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).
Virtanen, Pauli, et al. "SciPy 1.0: fundamental algorithms for scientific computing in Python." Nature methods 17.3 (2020): 261-272.
Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.
Examples
Last updated