ckappa.cmatrix.md
ckappa.cmatrix
R Documentation
Cohen's \kappa-Statistic
\kappa-StatisticDescription
A generic S3 function to compute the cohen's \kappa-statistic score
for a classification model. This function dispatches to S3 methods inckappa() and performs no input validation. If you supply NA values or
vectors of unequal length (e.g. length(x) != length(y)), the
underlying C++ code may trigger undefined behavior and crash your R
session.
Defensive measures
Because ckappa() operates on raw pointers, pointer-level faults (e.g.
from NA or mismatched length) occur before any R-level error handling.
Wrapping calls in try() or tryCatch() will not prevent R-session
crashes.
To guard against this, wrap ckappa() in a "safe" validator that checks
for NA values and matching length, for example:
safe_ckappa <- function(x, y, ...) {
stopifnot(
!anyNA(x), !anyNA(y),
length(x) == length(y)
)
ckappa(x, y, ...)
}Apply the same pattern to any custom metric functions to ensure input
sanity before calling the underlying C++ code.
Efficient multi-metric evaluation
For multiple performance evaluations of a classification model, first
compute the confusion matrix once via cmatrix(). All other performance
metrics can then be derived from this one object via S3 dispatching:
## compute confusion matrix
confusion_matrix <- cmatrix(actual, predicted)
## evaluate cohen's \eqn{\kappa}-statistic
## via S3 dispatching
ckappa(confusion_matrix)
## additional performance metrics
## belowThe ckappa.factor() method calls cmatrix() internally, so explicitly
invoking ckappa.cmatrix() yourself avoids duplicate computation,
yielding significant speed and memory effciency gains when you need
multiple evaluation metrics.
Usage
Arguments
x
A confusion matrix created cmatrix().
beta
A <double> value of length 1 (default: 0). If \beta \neq 0 the off-diagonals of the confusion matrix are penalized with a factor of (y_{+} - y_{i,-})^\beta.
...
Arguments passed into other methods.
Value
A <double>-value
References
James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.
Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).
Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.
Examples
Last updated