weighted.pinball.numeric.md
weighted.pinball.numeric
R Documentation
Pinball Loss
Description
A generic S3 function to compute the pinball loss score for a
regression model. This function dispatches to S3 methods in pinball()
and performs no input validation. If you supply NA values or vectors of
unequal length (e.g. length(x) != length(y)
), the underlying C++
code may trigger undefined behavior and crash your R
session.
Defensive measures
Because pinball()
operates on raw pointers, pointer-level faults (e.g.
from NA or mismatched length) occur before any R
-level error handling.
Wrapping calls in try()
or tryCatch()
will not prevent R
-session
crashes.
To guard against this, wrap pinball()
in a "safe" validator that
checks for NA values and matching length, for example:
Apply the same pattern to any custom metric functions to ensure input
sanity before calling the underlying C++
code.
Usage
Arguments
actual
, predicted
A pair of <double> vectors of length n
.
w
A <double> vector of sample weights.
alpha
A <double>-value of length 1
(default: 0.5
). The slope of the pinball loss function.
deviance
A <logical>-value of length 1 (default: FALSE). If TRUE the function returns the D^2
loss.
...
Arguments passed into other methods
Value
A <double> value
References
James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.
Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).
Virtanen, Pauli, et al. "SciPy 1.0: fundamental algorithms for scientific computing in Python." Nature methods 17.3 (2020): 261-272.
Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.
Examples
Last updated