weighted.ccc.numeric.md
weighted.ccc.numeric
R Documentation
Concordance Correlation Coefficient
Description
A generic S3 function to compute the concordance correlation
coefficient score for a regression model. This function dispatches to
S3 methods in ccc()
and performs no input validation. If you supply NA
values or vectors of unequal length (e.g. length(x) != length(y)
), the
underlying C++
code may trigger undefined behavior and crash your R
session.
Defensive measures
Because ccc()
operates on raw pointers, pointer-level faults (e.g.
from NA or mismatched length) occur before any R
-level error handling.
Wrapping calls in try()
or tryCatch()
will not prevent R
-session
crashes.
To guard against this, wrap ccc()
in a "safe" validator that checks
for NA values and matching length, for example:
Apply the same pattern to any custom metric functions to ensure input
sanity before calling the underlying C++
code.
Usage
Arguments
actual
, predicted
A pair of <double> vectors of length n
.
w
A <double> vector of sample weights.
correction
A <logical> vector of length 1
(default: FALSE). If TRUE the variance and covariance will be adjusted with \frac{1-n}{n}
...
Arguments passed into other methods
Value
A <double> value
References
James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.
Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).
Virtanen, Pauli, et al. "SciPy 1.0: fundamental algorithms for scientific computing in Python." Nature methods 17.3 (2020): 261-272.
Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.
Examples
Last updated