deviance.gamma.md
deviance.gamma
R Documentation
Gamma Deviance
Description
A generic S3 function to compute the gamma deviance score for a
regression model. This function dispatches to S3 methods indeviance.gamma() and performs no input validation. If you supply NA
values or vectors of unequal length (e.g. length(x) != length(y)), the
underlying C++ code may trigger undefined behavior and crash your R
session.
Defensive measures
Because deviance.gamma() operates on raw pointers, pointer-level
faults (e.g. from NA or mismatched length) occur before any R-level
error handling. Wrapping calls in try() or tryCatch() will not
prevent R-session crashes.
To guard against this, wrap deviance.gamma() in a "safe" validator
that checks for NA values and matching length, for example:
safe_deviance.gamma <- function(x, y, ...) {
  stopifnot(
    !anyNA(x), !anyNA(y),
    length(x) == length(y)
  )
  deviance.gamma(x, y, ...)
}Apply the same pattern to any custom metric functions to ensure input
sanity before calling the underlying C++ code.
Usage
## Generic S3 method
## for Gamma Deviance
deviance.gamma(...)
## Generic S3 method
## for weighted Gamma Deviance
weighted.deviance.gamma(...)Arguments
...
Arguments passed on to deviance.gamma.numeric,weighted.deviance.gamma.numeric
actual,predicted
A pair of <double> vectors of length n.
w
A <double> vector of sample weights.
Value
A <double> value
References
James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.
Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).
Virtanen, Pauli, et al. "SciPy 1.0: fundamental algorithms for scientific computing in Python." Nature methods 17.3 (2020): 261-272.
Examples
## Generate actual
## and predicted values
actual_values    <- c(1.3, 0.4, 1.2, 1.4, 1.9, 1.0, 1.2)
predicted_values <- c(0.7, 0.5, 1.1, 1.2, 1.8, 1.1, 0.2)
## Evaluate performance
SLmetrics::deviance.gamma(
   actual    = actual_values, 
   predicted = predicted_values
)
</div>
Last updated