fer.md
fer
R Documentation
False Omission Rate
Description
A generic S3 function to compute the false omission rate score for a
classification model. This function dispatches to S3 methods in fer()
and performs no input validation. If you supply NA values or vectors of
unequal length (e.g. length(x) != length(y)), the underlying C++
code may trigger undefined behavior and crash your R session.
Defensive measures
Because fer() operates on raw pointers, pointer-level faults (e.g.
from NA or mismatched length) occur before any R-level error handling.
Wrapping calls in try() or tryCatch() will not prevent R-session
crashes.
To guard against this, wrap fer() in a "safe" validator that checks
for NA values and matching length, for example:
safe_fer <- function(x, y, ...) {
stopifnot(
!anyNA(x), !anyNA(y),
length(x) == length(y)
)
fer(x, y, ...)
}Apply the same pattern to any custom metric functions to ensure input
sanity before calling the underlying C++ code.
Efficient multi-metric evaluation
For multiple performance evaluations of a classification model, first
compute the confusion matrix once via cmatrix(). All other performance
metrics can then be derived from this one object via S3 dispatching:
## compute confusion matrix
confusion_matrix <- cmatrix(actual, predicted)
## evaluate false omission rate
## via S3 dispatching
fer(confusion_matrix)
## additional performance metrics
## belowThe fer.factor() method calls cmatrix() internally, so explicitly
invoking fer.cmatrix() yourself avoids duplicate computation, yielding
significant speed and memory effciency gains when you need multiple
evaluation metrics.
Usage
## Generic S3 method
## for False Omission Rate
fer(...)
## Generic S3 method
## for weighted False Omission Rate
weighted.fer(...)Arguments
...
Arguments passed on to fer.factor,weighted.fer.factor, fer.cmatrix
actual,predicted
A pair of <integer> or <factor> vectors of length n, and k levels.
estimator
An <integer>-value of length 1
(default: 0).
0 - a named <double>-vector of length k (class-wise)
1 - a <double> value (Micro averaged metric)
2 - a <double> value (Macro averaged metric)
na.rm
A <logical> value of length 1
(default: TRUE). If TRUE, NA values are removed from the computation.
This argument is only relevant when micro != NULL. Whenna.rm = TRUE, the computation corresponds tosum(c(1, 2, NA), na.rm = TRUE) / length(na.omit(c(1, 2, NA))).
When na.rm = FALSE, the computation corresponds tosum(c(1, 2, NA), na.rm = TRUE) / length(c(1, 2, NA)).
w
A <double> vector of sample weights.
x
A confusion matrix created cmatrix().
Value
If estimator is given as
0 - a named <double> vector of length k
1 - a <double> value (Micro averaged metric)
2 - a <double> value (Macro averaged metric)
References
James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.
Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).
Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.
Examples
## Classes and
## seed
set.seed(1903)
classes <- c("Kebab", "Falafel")
## Generate actual
## and predicted classes
actual_classes <- factor(
x = sample(x = classes, size = 1e3, replace = TRUE),
levels = c("Kebab", "Falafel")
)
predicted_classes <- factor(
x = sample(x = classes, size = 1e3, replace = TRUE),
levels = c("Kebab", "Falafel")
)
## Evaluate performance
SLmetrics::fer(
actual = actual_classes,
predicted = predicted_classes
)
</div>
Last updated