maape.numeric.md
maape.numeric
R Documentation
Mean Arctangent Absolute Percentage Error
Description
A generic S3 function to compute the mean arctangent absolute
percentage error score for a regression model. This function dispatches
to S3 methods in maape()
and performs no input validation. If you
supply NA values or vectors of unequal length (e.g.length(x) != length(y)
), the underlying C++
code may trigger
undefined behavior and crash your R
session.
Defensive measures
Because maape()
operates on raw pointers, pointer-level faults (e.g.
from NA or mismatched length) occur before any R
-level error handling.
Wrapping calls in try()
or tryCatch()
will not prevent R
-session
crashes.
To guard against this, wrap maape()
in a "safe" validator that checks
for NA values and matching length, for example:
safe_maape <- function(x, y, ...) {
stopifnot(
!anyNA(x), !anyNA(y),
length(x) == length(y)
)
maape(x, y, ...)
}
Apply the same pattern to any custom metric functions to ensure input
sanity before calling the underlying C++
code.
Usage
## S3 method for class 'numeric'
maape(actual, predicted, ...)
Arguments
actual
, predicted
A pair of <double> vectors of length n
.
...
Arguments passed into other methods
Value
A <double> value
References
James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.
Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).
Virtanen, Pauli, et al. "SciPy 1.0: fundamental algorithms for scientific computing in Python." Nature methods 17.3 (2020): 261-272.
Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.
Examples
## Generate actual
## and predicted values
actual_values <- c(1.3, 0.4, 1.2, 1.4, 1.9, 1.0, 1.2)
predicted_values <- c(0.7, 0.5, 1.1, 1.2, 1.8, 1.1, 0.2)
## Evaluate performance
SLmetrics::maape(
actual = actual_values,
predicted = predicted_values
)
</div>
Last updated