shannon.entropy.matrix.md
shannon.entropy.matrix
R Documentation
Shannon Entropy
Description
A generic S3 function to compute the shannon entropy score for a
classification model. This function dispatches to S3 methods inshannon.entropy() and performs no input validation. If you supply NA
values or vectors of unequal length (e.g. length(x) != length(y)), the
underlying C++ code may trigger undefined behavior and crash your R
session.
Defensive measures
Because shannon.entropy() operates on raw pointers, pointer-level
faults (e.g. from NA or mismatched length) occur before any R-level
error handling. Wrapping calls in try() or tryCatch() will not
prevent R-session crashes.
To guard against this, wrap shannon.entropy() in a "safe" validator
that checks for NA values and matching length, for example:
safe_shannon.entropy <- function(x, y, ...) {
stopifnot(
!anyNA(x), !anyNA(y),
length(x) == length(y)
)
shannon.entropy(x, y, ...)
}Apply the same pattern to any custom metric functions to ensure input
sanity before calling the underlying C++ code.
Usage
## S3 method for class 'matrix'
shannon.entropy(pk, dim = 0L, normalize = FALSE, ...)Arguments
pk
A n \times k <double>-matrix of observed probabilities. The i-th row should sum to 1 (i.e., a valid probability distribution over the k classes). The first column corresponds to the first factor level in actual, the second column to the second factor level, and so on.
dim
An <integer> value of length 1 (Default: 0). Defines the dimension along which to calculate the entropy (0: total, 1: row-wise, 2: column-wise).
normalize
A <logical>-value (default: TRUE). If TRUE, the mean cross-entropy across all observations is returned; otherwise, the sum of cross-entropies is returned.
...
Arguments passed into other methods.
Value
A <double> value or vector:
A single <double> value (length 1) if
dim == 0.A <double> vector with length equal to the length of columns if
dim == 1.A <double> vector with length equal to the length of rows if
dim == 2.
References
MacKay, David JC. Information theory, inference and learning algorithms. Cambridge university press, 2003.
Kramer, Oliver, and Oliver Kramer. "Scikit-learn." Machine learning for evolution strategies (2016): 45-53.
Virtanen, Pauli, et al. "SciPy 1.0: fundamental algorithms for scientific computing in Python." Nature methods 17.3 (2020): 261-272.
Examples
Last updated