fbeta.md
fbeta
R Documentation
f_{\beta}
f_{\beta}
Description
A generic S3 function to compute the f_{\beta}
score for a
classification model. This function dispatches to S3 methods infbeta()
and performs no input validation. If you supply NA values or
vectors of unequal length (e.g. length(x) != length(y)
), the
underlying C++
code may trigger undefined behavior and crash your R
session.
Defensive measures
Because fbeta()
operates on raw pointers, pointer-level faults (e.g.
from NA or mismatched length) occur before any R
-level error handling.
Wrapping calls in try()
or tryCatch()
will not prevent R
-session
crashes.
To guard against this, wrap fbeta()
in a "safe" validator that checks
for NA values and matching length, for example:
Apply the same pattern to any custom metric functions to ensure input
sanity before calling the underlying C++
code.
Efficient multi-metric evaluation
For multiple performance evaluations of a classification model, first
compute the confusion matrix once via cmatrix()
. All other performance
metrics can then be derived from this one object via S3 dispatching:
The fbeta.factor()
method calls cmatrix()
internally, so explicitly
invoking fbeta.cmatrix()
yourself avoids duplicate computation,
yielding significant speed and memory effciency gains when you need
multiple evaluation metrics.
Usage
Arguments
...
Arguments passed on to fbeta.factor
,weighted.fbeta.factor
, fbeta.cmatrix
beta
A <double> vector of length 1
(default: 1
).
actual,predicted
A pair of <integer> or <factor> vectors of length n
, and k
levels.
estimator
An <integer>-value of length 1
(default: 0
).
0 - a named <double>-vector of length k (class-wise)
1 - a <double> value (Micro averaged metric)
2 - a <double> value (Macro averaged metric)
na.rm
A <logical> value of length 1
(default: TRUE). If TRUE, NA values are removed from the computation.
This argument is only relevant when micro != NULL
. Whenna.rm = TRUE
, the computation corresponds tosum(c(1, 2, NA), na.rm = TRUE) / length(na.omit(c(1, 2, NA)))
.
When na.rm = FALSE
, the computation corresponds tosum(c(1, 2, NA), na.rm = TRUE) / length(c(1, 2, NA))
.
w
A <double> vector of sample weights.
x
A confusion matrix created cmatrix()
.
Value
If estimator
is given as
0 - a named <double> vector of length k
1 - a <double> value (Micro averaged metric)
2 - a <double> value (Macro averaged metric)
References
James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.
Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).
Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12 (2011): 2825-2830.
Examples
Last updated