rmse.md
rmse
R Documentation
Root Mean Squared Error
Description
A generic S3 function to compute the root mean squared error score for
a regression model. This function dispatches to S3 methods in rmse()
and performs no input validation. If you supply NA values or vectors of
unequal length (e.g. length(x) != length(y)
), the underlying C++
code may trigger undefined behavior and crash your R
session.
Defensive measures
Because rmse()
operates on raw pointers, pointer-level faults (e.g.
from NA or mismatched length) occur before any R
-level error handling.
Wrapping calls in try()
or tryCatch()
will not prevent R
-session
crashes.
To guard against this, wrap rmse()
in a "safe" validator that checks
for NA values and matching length, for example:
safe_rmse <- function(x, y, ...) {
stopifnot(
!anyNA(x), !anyNA(y),
length(x) == length(y)
)
rmse(x, y, ...)
}
Apply the same pattern to any custom metric functions to ensure input
sanity before calling the underlying C++
code.
Usage
## Generic S3 method
## for Root Mean Squared Error
rmse(...)
## Generic S3 method
## for weighted Root Mean Squared Error
weighted.rmse(...)
Arguments
...
Arguments passed on to rmse.numeric
,weighted.rmse.numeric
actual,predicted
A pair of <double> vectors of length n
.
w
A <double> vector of sample weights.
Value
A <double> value
References
James, Gareth, et al. An introduction to statistical learning. Vol. 112. No. 1. New York: springer, 2013.
Hastie, Trevor. "The elements of statistical learning: data mining, inference, and prediction." (2009).
Virtanen, Pauli, et al. "SciPy 1.0: fundamental algorithms for scientific computing in Python." Nature methods 17.3 (2020): 261-272.
Examples
## Generate actual
## and predicted values
actual_values <- c(1.3, 0.4, 1.2, 1.4, 1.9, 1.0, 1.2)
predicted_values <- c(0.7, 0.5, 1.1, 1.2, 1.8, 1.1, 0.2)
## Evaluate performance
SLmetrics::rmse(
actual = actual_values,
predicted = predicted_values
)
</div>
Last updated